Lasers have played an important role in medical device manufacturing


Journal of medical physics and applied sciences is an international peer reviwed journal aiming to publish the most relevant and recent research works across the world. Medical Physicists will contribute to maintaining and improving the quality, safety and cost-effectiveness of healthcare services through patient-oriented activities requiring expert action, involvement or advice regarding the specification, selection, acceptance testing, commissioning, quality assurance/control and optimised clinical use of medical devices and regarding patient risks and protection from associated physical agents (e.g. x-rays, electromagnetic fields, laser light, radionuclides) including the prevention of unintended or accidental exposures; all activities will be based on current best evidence or own scientific research when the available evidence is not sufficient. Medical physics is also called biomedical physics, medical biophysics or applied physics in medicine is, generally speaking, the application of physics concepts, theories and methods to medicine or healthcare.

Although newer laser technologies are available, in some cases the Nd:YAG is still the best or only laser for a specific job. Traditionally Nd:YAG laser applications, such as cutting small, intricate parts from thin and exotic metals, is now often done with fiber lasers. However, since pulsed Nd:YAG lasers can deliver extremely high peak powers with pulses in the millisecond and nanosecond range, they are still the best choice for highly reflective materials. The pulsed Nd:YAG laser also excels in welding intricate and heat sensitive parts such as arthroscopic shavers, pacemakers, small batteries, or any sensitive electrical device that is implanted in the body and, therefore, must be hermetically sealed. For these types of applications, a tailored-shaped, high peak-energy pulse is specifically designed to weld without damaging the part. Pulsed Nd:YAG lasers also drill holes in hypodermic needles, drug delivery devices, and precision flow valves.

In the last seven years, developments in laser technology have taken material processing to new heights. Faster and more precise results are achieved with less material damage and in new materials. The best known are fiber and disk lasers, which are diode pumped of an active medium and deliver a 1,030- to 1,100-nm wavelength through an optical fiber as small as 11-µm diameter. These lasers boast electrical efficiencies around 30% and deliver extremely high beam quality through a fiber to the work piece. System design and maintenance are less complex, which has enabled large market growth. Lasers under 1,000 W cut thin gauge metals for stents; enable new, smaller surgical devices and tools; or achieve precise and narrow welds for many medical devices.

Authors are welcome to submit their manuscripts. Submit manuscript at (or) as an e-mail attachment to or

Media contact

Eliza Miller

Managing Editor

Journal of Medical Physics and Applied Sciences