The FPU Recurrence Model of the Protein Synthesis


Journal of medical physics and applied sciences is an international peer reviwed journal aiming to publish the most relevant and recent research works across the world. Medical Physicists will contribute to maintaining and improving the quality, safety and cost-effectiveness of healthcare services through patient-oriented activities requiring expert action, involvement or advice regarding the specification, selection, acceptance testing, commissioning, quality assurance/control and optimised clinical use of medical devices and regarding patient risks and protection from associated physical agents (e.g. x-rays, electromagnetic fields, laser light, radionuclides) including the prevention of unintended or accidental exposures; all activities will be based on current best evidence or own scientific research when the available evidence is not sufficient. Medical physics is also called biomedical physics, medical biophysics or applied physics in medicine is, generally speaking, the application of physics concepts, theories and methods to medicine or healthcare.

We are sharing one of the most cited article from our journal. Article entitled “The FPU Recurrence Model of the Protein Synthesis” was well written by Dr. Andrey Berezin.


The paper suggests a theoretical model of the physical mechanism of recognizing and joining of the transport RNA molecules with the information RNA molecules on the basis of the Fermi-Pasta-Ulam (FPU) recurrence and the group resonance phenomena. Both were experimentally observed in plasma dynamics. The suggested mathematical model represents two coupled nonlinear Shrodinger equations for the description of interaction between the FPU recurrence electric fields in the chains of the tRNA and iRNA molecules.

The results of numerical study of the model of dynamics of the tRNA and iRNA molecules in the intracellular solution allow making a conclusion that in a cell there exists a physical mechanism of recognizing, attracting and repelling between the tRNA and iRNA molecules, providing the synthesis of protein. This mechanism is based on the FPU recurrence, whose spectrum structure gives a pattern – matrix for building a protein. Such resonant dynamics is generally characteristic for the dynamics of interaction between the FPU recurrences, in particular the elementary FPU recurrence of the tRNA molecule electrical field and full FPU recurrence of the iRNA molecule electrical field.

Moreover, the suggested physical mechanism allows offering a method of external influence on a cell aiming at acceleration of the protein synthesis in it by the applying electromagnetic fields in a form of the FPU recurrence spectrum.

Here is the link to view complete article:

Authors are welcome to submit their manuscripts. Submit manuscript at (or) as an e-mail attachment to or

Media contact

Eliza Miller

Managing Editor

Journal of Medical Physics and Applied Sciences