Trauma and orthopaedic nursing: Ankle and Foot Trauma

Image

Orthopedic surgery or orthopedics, also spelled orthopaedics, is the branch of surgery concerned with conditions involving the musculoskeletal system. Orthopedic surgeons use both surgical and nonsurgical means to treat musculoskeletal trauma, spine diseases, sports injuries, degenerative diseases, infections, tumors, and congenital disorders.

Etymology

Further information: International scientific vocabulary and List of Greek morphemes used in English

Nicholas Andry coined the word in French as orthopédie, derived from the Ancient Greek words á½€ρθÏŒς orthos ("correct", "straight") and παιδίον paidion ("child"), and published Orthopedie (translated as Orthopædia: Or the Art of Correcting and Preventing Deformities in Childre) in 1741. The word was assimilated into English as orthopædics; the ligature æ was common in that era for ae in Greek- and Latin-based words. Though, as the name implies, the discipline was initially developed with attention to children, the correction of spinal and bone deformities in all stages of life eventually became the cornerstone of orthopedic practice.

Differences in spelling

As with many words derived with the "æ" ligature, simplification to either "ae" or just "e" is common, especially in North America. In the US, the majority of college, university and residency programs, and even the American Academy of Orthopaedic Surgeons, still use the spelling with the digraph ae, though hospitals usually use the shortened form. Elsewhere, usage is not uniform: in Canada, both spellings are acceptable; orthopaedics usually prevails in the rest of the British Commonwealth, especially in the UK.

History

Early orthopedics

Many developments in orthopedic surgery have resulted from experiences during wartime. On the battlefields of the Middle Ages the injured were treated with bandages soaked in horses' blood which dried to form a stiff, but unsanitary, splint.

Originally, the term orthopedics meant the correcting of musculoskeletal deformities in children. Nicolas Andry, a professor of medicine at the University of Paris coined the term in the first textbook written on the subject in 1741. He advocated the use of exercise, manipulation and splinting to treat deformities in children. His book was directed towards parents, and while some topics would be familiar to orthopedists today, it also included 'excessive sweating of the palms' and freckles.

Jean-André Venel established the first orthopedic institute in 1780, which was the first hospital dedicated to the treatment of children's skeletal deformities. He developed the club-foot shoe for children born with foot deformities and various methods to treat curvature of the spine.

Advances made in surgical technique during the 18th century, such as John Hunter's research on tendon healing and Percival Pott's work on spinal deformity steadily increased the range of new methods available for effective treatment. Antonius Mathijsen, a Dutch military surgeon, invented the plaster of Paris cast in 1851. However, up until the 1890s, orthopedics was still a study limited to the correction of deformity in children. One of the first surgical procedures developed was percutaneous tenotomy. This involved cutting a tendon, originally the Achilles tendon, to help treat deformities alongside bracing and exercises. In the late 1800s and first decades of the 1900s, there was significant controversy about whether orthopedics should include surgical procedures at all.

Modern orthopedics

Hugh Owen Thomas, a pioneer of modern orthopedic surgery.

Examples of people who aided the development of modern orthopedic surgery were Hugh Owen Thomas, a surgeon from Wales, and his nephew, Robert Jones. Thomas became interested in orthopedics and bone-setting at a young age and, after establishing his own practice, went on to expand the field into general treatment of fracture and other musculoskeletal problems. He advocated enforced rest as the best remedy for fractures and tuberculosis and created the so-called 'Thomas Splint', to stabilize a fractured femur and prevent infection. He is also responsible for numerous other medical innovations that all carry his name: 'Thomas's collar' to treat tuberculosis of the cervical spine, 'Thomas's manoeuvre', an orthopedic investigation for fracture of the hip joint, Thomas test, a method of detecting hip deformity by having the patient lying flat in bed, 'Thomas's wrench' for reducing fractures, as well as an osteoclast to break and reset bones.

Thomas's work was not fully appreciated in his own lifetime. It was only during the First World War that his techniques came to be used for injured soldiers on the battlefield. His nephew, Sir Robert Jones, had already made great advances in orthopedics in his position as Surgeon-Superintendent for the construction of the Manchester Ship Canal in 1888. He was responsible for the injured among the 20,000 workers, and he organized the first comprehensive accident service in the world, dividing the 36 mile site into 3 sections, and establishing a hospital and a string of first aid posts in each section. He had the medical personnel trained in fracture management. He personally managed 3,000 cases and performed 300 operations in his own hospital. This position enabled him to learn new techniques and improve the standard of fracture management. Physicians from around the world came to Jones’ clinic to learn his techniques. Along with Alfred Tubby, Jones founded the British Orthopaedic Society in 1894.

During the First World War, Jones served as a Territorial Army surgeon. He observed that treatment of fractures both at the front and in hospitals at home was inadequate, and his efforts led to the introduction of military orthopedic hospitals. He was appointed Inspector of Military Orthopaedics, with responsibility over 30,000 beds. The hospital in Ducane Road, Hammersmith became the model for both British and American military orthopedic hospitals. His advocacy of the use of Thomas splint for the initial treatment of femoral fractures reduced mortality of compound fractures of the femur from 87% to less than 8% in the period from 1916 to 1918.

Cause

Movements – especially turning, and rolling of the foot – are the primary cause of an ankle sprain.

 

The risk of a sprain is greatest during activities that involve explosive side-to-side motion, such as tennis, skateboarding or basketball. Sprained ankles can also occur during normal daily activities such as stepping off a curb or slipping on ice. Returning to activity before the ligaments have fully healed may cause them to heal in a stretched position, resulting in less stability at the ankle joint. This can lead to a condition known as Chronic Ankle Instability (CAI), and an increased risk of ankle sprains.

The following factors can contribute to an increased risk of ankle sprains:

Weak muscles/tendons that cross the ankle joint, especially the muscles of the lower leg that cross the outside, or lateral aspect of the ankle joint (i.e. peroneal or fibular muscles):

Weak or lax ligaments that join together the bones of the ankle joint – this can be hereditary or due to overstretching of ligaments as a result of repetitive ankle sprains:

Inadequate joint proprioception (i.e., sense of joint position):

Slow neuron muscular response to an off-balance position:

 Wearing high-heeled shoes – due to the weak position of the ankle joint with an elevated heel, and a small base of support.

Ankle sprains occur usually through excessive stress on the ligaments of the ankle. This can be caused by excessive external rotation, inversion or eversion of the foot caused by an external force. When the foot is moved past its range of motion, the excess stress puts a strain on the ligaments. If the strain is great enough to the ligaments past the yield point, then the ligament becomes damaged, or sprained.

 

Regards

John George

Journal of Trauma and Orthopedic Nursing

Email: editor.jton@emedsci.com

Whatsapp no: +1-947-333-4405